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ABSTRACT 

We describe the nil radical of power series rings in non-commuting 
indeterminates by showing that a series belongs to the radical if and only 

if the ideal generated by its coefficients is nilpotent. We also show that 
the principal ideals generated by elements of the nil radical of the power 
series ring in one indeterminate are nil of bounded i n d e x .  

In troduc t ion  

Many studies in the theory of associative rings concern radicals and related prop- 
erties of rings arising under various constructions. They are rich in interesting 
and useful results but there are still many open problems in the area (cf. [1, 
10] and the papers cited therein). These in particular concern power series rings 
(see, for instance, [1, 6, 7, 8]). In this paper we continue studies of the nil radical 
of such rings. 

It is relatively easy to show [8] that the power series ring in at least two non- 

commuting indeterminates is nil if and only if the coefficient ring is nilpotent. 
Thus it is natural to expect ([10], Question 16) that an element of a power series 
ring in at least two non-commuting indeterminates belongs to the nil radical of 
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the ring if and only if the ideal of the coefficient ring generated by the coefficients 

of the element is nilpotent. We shall prove that  this is indeed the case. 

The structure of the nit radical of power series rings in one indeterminate is 

more complicated. In [4] Klein proved that  if R is a nil ring of bounded index, 

then so is the ring R[x] of polynomials in one indeterminate x. This immediately 

implies tha t  also the power series ring R { x )  is nil of bounded index. In I8] it was 

proved that  if R { x )  is a nil ring, then R is nil of bounded index. Thus R ( x }  is 

nil if and only if R is nil of bounded index and one could expect ([10], Question 

15) that  an element of the power series ring A { x )  belongs to the nil radical of 

A ( x )  if and only if the ideal of A generated by the coefficients of the element 

is nil of bounded index. An example in [2] shows that  this is not true even for 

commutat ive rings. However, we shall prove that  every principal right nil ideal 

of A { x )  is nil of bounded index. This in particular shows that  the nil radical of 

A { x )  coincides with N ( A { x ) ) ,  where for a ring R, N(R)  is defined ([11], p. 206) 

as N ( R )  = {r e R I rR  is nil of bounded index ). 

1. S o m e  s e q u e n c e s  o f  n a t u r a l  n u m b e r s  

Throughout  the paper  N denotes the set of natural numbers and S denotes the 

n c~ 3 p, set of all sequences ( i)~=1 of natural  numbers such that  nl  -- 1 and ni+l -- 

for i > 1, where Pi is a natural  number with ni + 2i < pi _< ni + 3i. 

LEMMA 1: Let (hi), (mi) E S. I f  for some k, l, nk = ml, then k = l and ni = mi 

for i <_ k. 

Proof." Let ul -- 3, vl = 4 and, for i > 1, ui+l -- 3 TM + 2 ( i §  vi+l = 3 TM + 3 ( i +  

1). Clearly for all i, ui < vi. We shall prove that  for each i, v i§  < ui+l. I t  is clear 

for i -- 1. Note that  for each i > 1, 3 "~ > 1 and 3 i > 2 i+1.  Hence i f v i + i  < Ui+l, 

t h e n v i + l + i § 2 4 7  ~ ' § 2 4 7  ~ - 1 §  < 

3 v' + 3"' (3 i - 1) + 2(i + 2) = 3 "'+i + 2(i + 2) < 3 ~'+' + 2(i § 2) = ui+2. Hence the 

inequality follows by induction. In particular it shows that  the intervals [ui,vi] 

are disjoint. 

We shall prove that  if n~+l -- 3 p~, then ui _ Pi _< vi. I t  is clear for i = 1. Now 

3 p' + 2(i + 1) -- ni+l + 2(i + 1) < Pi+l _< ni+l + 3(i § 1) = 3 p' + 3(i + 1). Hence if 

ui _< Pi ~ vi, then ui+l ~- 3 ~' § 2(i + 1) < 3 p' + 2(i + 1) < Pi+l <__ 3 p' § 3(i + 1) 

3 ~ + 3(i + 1) ~ vi+l. Hence the inequalities follow by induction. 

The  foregoing prove the first claim of the lemma. To get the second claim it 

suffices to show tha t  for each i, ni > mi implies ni+l > mi+l.  Note tha t  since 

ni and mi are powers of 3, if ni > mi, then ni _> 3mi. Now if ni+l -- 3 p' and 
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mi+l  ---- 3 q~, then Pi _> ni + 2i >_ 3mi + 2i = mi + 2mi + 2i > mi + i + 2i = 

mi  + 3i >_ qi. Consequent ly  ni+l  > mi+l  and the result follows. I 

We shall say tha t  a natura l  number  t b e l o n g s  t o  a sequence (si) �9 S if t = si 

for some i. Given natural  numbers  t and u , we call u an S - s u c c e s s o r  of t if 

there is (si) C S such tha t  sk = t and sl = u for some k _< I. 

LEMMA 2: I f  S = U~~ Sl, for some subsets  Sz, then there exist  n E N and t 

belonging to a sequence o f  S such that  each S-successor o f t  belongs to a sequence 

o f  Sn. 

Proof: Suppose the result does not  hold, i.e., for each t belonging to a sequence 

of S and each i there exists an S-successor A(t)  of t such tha t  f~(t) does not  

belong to any sequence of Si. 

Pu t  t l  -- 1 and, for i ~_ i ,  ti+z = f i ( t i ) .  Applying Lemma 1 one gets tha t  

t l , t 2 , . . ,  is a subsequence of a sequence s �9 S. It is clear tha t  s ~ U~=z Sl, a 

contradict ion.  I 

2. S o m e  proper t i e s  o f  free m o n o i d s  

Let W be the free monoid  generated by a set of non-commut ing  indeterminates  

containing x and y. As usual, given w E W, we denote by l (w) the length of w. 

Given a subset X of the set {xykx] k �9 N},  define for w �9 W 

d x ( w )  = card{(wl ,w2)  �9 W • W i x w x  -- w luw2  for some u �9 X}.  

Clearly d 0 (w) = 0 for every w E W. 

LEMMA 3: T h e  mapp ing  d x ( w )  has the following properties.  

(a) I f  w = x y k x ,  k E N ,  then d x ( y  k) = d x ( w )  = { O i f  w C X ,  
1 i f w  E X .  

(b) I f  ql,q2 E W and u E { xykx l  k E N } ,  then dx(q luq2)  = d x ( q l )  + d x ( u )  + 

dx(q2) .  

(c) I f  plup2 = qlu~ q2 for some u, u' E X and Pl, P2, qz, q2 E W ,  then d x ( p l )  = 

dx (q z )  implies  that  Pl = ql, u = u', P2 = q2. 

Proof: The  proper ty  (a) is a direct consequence of the definition of d z .  To 

get (b) let us observe tha t  given Pl,P2 E W ,  x p l x p 2 x  = w l x y k x w 2  for some 

Wl,W2 E W if and only if precisely one of the equalities x p l x  = Wlxykxwl l  

or xp2x  = w~2xykxw2 is satisfied for some w~,w~2 �9 W .  Hence d x ( p l x p 2 )  = 

d x  (Pl) + d z  (P2)- Consequently,  if u -- x y  k x,  then d z  (ql uq2) = d x  (ql) + d z  (yk) + 

dx(q2)  = d x ( q l )  + d x ( u )  + dx(q2) .  Now we shall prove (c). Note first tha t  by 
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(b) we have dx(P2)  --- dx(q2) .  Observe also tha t  if l (pl)  < l(ql),  t hen  pluq '  = ql 

for some q~ E W or p l u  = qlx.  In bo th  cases, apply ing  (a) and  (b), we get  

t ha t  dx(p~)  ~ dx(q2) ,  a contradict ion.  Symmet r i c  a rguments  show tha t  also 

/(Pl)  > l(ql)  is impossible.  Thus  l(pl)  = /(ql) and one easily concludes the  

proof.  | 

LEMMA 4: Let  X and Y be subsets  o f  the set  {xykx[  k E N}. Consider el- 

emen t s  Pl , . . . ,P~,  ql,...,q,~ o f  W such that  d z \ y ( p i )  = 0 for i = 1 , . . . ,n .  I f  
X t X t X I t plxlP2X2 "" "pnXn ---- r lq2 2 "" "qn n, w h e r e x l ,  . . . ,xn E X \ Y a n d x  ~ 1 , . . . , X n  E 

X ,  then Pl = ql,...,P,~ = q,~, Xl = x~, . . . ,xn = x,~ or ~-~i=l dy(qi)  < ~-]i=1 y(Pi) .  

Proof: By L e m m a  3 (a),(b) we have 

X t d y ( p l )  -b d y ( p 2 ) + "  " +dy (p~)  = d y ( p l X l  " "pnXn) = dy(qlx~l " " q n  n) 

= d v ( q l ) + " "  +dv(qn)  + dy(X~l)+ "'" +dr(x~n). 

Thus  ~-~i~1 dy(q i )  <_ ~i~=1 dy(pi ) .  Moreover,  if ~ i ~ l  dy(qi)  = ~-~=1 dy(p i ) ,  
! 

then  dy (x~ )  . . . . .  d y ( x ~ )  = 0, so x~ , . . . , x ,~  E X \ Y. Now apply ing  again  

L e m m a  3 (a),(b) we get tha t  

n = d x  \ y ( z l )  + " "  + d x  .. y(X,~) = d x  .. y ( p l x i "  .p,~x,~) 

= d x  .. y(qlX~l "'" qnx~) 

= d x \ y ( q l )  + " "  + d x . . v ( q , )  + n. 

Consequently,  d x \ v ( q l )  . . . . .  d x ~ y ( q n )  = O. Applying  L e m m a  3 (c) to 
! 

d X ~ . y  we get by induct ion t h a t  Pl = ql, ...,P,~ -- q~ and x l  = x~, ...,x,~ = x,~. 
| 

3. N i l  i d e a l s  o f  power series rings 

We s ta r t  with 

LEMMA 5: Let  A be a subset  of  a r ing R.  The  right ideal o f  R genera ted  by A 

is n i lpotent  i f  and only  ff  for every  finite or countable subset  B o f  R there is an 

n such that  a lbl  . . .  a,~b~ = 0 for arbitrary al ,  a2, ..., a,~ E A and bl, ..., b,~ E B ,  

Proof: T h e  "only if" pa r t  of the result  is clear. If the  "if" pa r t  does not  hold, 

then  for every n there  exist a l , . , . . .  ,a,~,,~ E A and r l , n , . . .  ,r,~,n E R such t h a t  

al,,~rl,,~...an,,~rn,,~ ~ O. However,  then  for B = {ri,j} the  a s sumpt ion  does not  

hold. | 

Let ,  like in Section 2, W denote  the free monoid  genera ted  by a set of inde- 

t e rmina te s  containing x and y. The  power series r ing over a ring R in this set  
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of indeterminates  will be denoted by R{W}.  Every element a E R { W }  can be 

uniquely presented in the form ~p~W app, where ap C R. Elements ap are called 

coefficients of a. 

THEOREM 6: An element a = ~-~pcW app belongs to a right nil ideal of R{W}  if 

and only if the right ideal of R generated by the set { ap [ p E W}  of coefficients 

of a is nilpotent. 

Proof: Let b0, bl, ... be any elements of R. Put ,  for every odd integer q > 0, 

rq2k -- bk, k = 0, 1, ..., and Sz -- {(si) E S[ ( a E ~  1 r~xyS~x) z = 0}. Since a is in a 

right nil ideal of R { W } ,  we have tha t  S -- U Sl. Let t and n be given by L e m m a  

2 applied to these sets. Suppose tha t  t -- cf belongs to a sequence (ci) C Sn and 

put  C = {xyClx, xyC2x, ...}. 

By L e m m a  5 it suffices to show tha t  for arbi t rary  coefficients apl , . . . ,  ap~ of a 

and a rb i t ra ry  non-negat ive integers kl, ..., k,~, we have a p l b k l  . . .  ap~bk~  ---- O. We 

proceed by induct ion on j --- de(p1) + ' "  + dc(p~). If j = 0, then dc (p l )  . . . . .  

dc(p~) = 0. Hence applying Lemma 4 for X = C and Y -- 0, we get tha t  for 

a rb i t ra ry  non-negat ive integers il, . . . , i n  the coefficient at plxyC'~ x . . . p ~ x y ~ x  

in the series (a ~ rixyC~x) n is equal to ap~ril .--ap~ri~. But,  on the other  hand,  

the coefficient is equal to zero. Hence taking il = 2k*, ' ' '  , i,~ = 2 k~ we get~that 

a p t b k  1 " . .  ap~bk~  ---- O. Suppose now tha t  j > 0 and the result holds for smaller 

integers. Let m -- m a x ( f , l ( p l . . . p ~ ) ) .  By the definition of sequences in S there 
I exists a sequence (d~) E S such tha t  d~ = ci for i < m and din+ 1 r Cm+l. 

! 
Clearly din+ 1 is an S-succesor of t, so by Lemma 2 there exists (di) E Sn such 

tha t  for some k, dk = d~+~. Applying Lemma 1 to (di) and (d'~) we get tha t  

k = m + 1 and d~ = d~ for i _< m + 1, and applying the lemma to (d~) and (c~) 

we obta in  tha t  d i =  ci if and only if i <_ m. Note tha t  since l(pl . . -p~)  _< m, 

for Y = C and X = {xydlx, xyd2x,...}, d x \ y ( P i )  = 0 for i = 1, . . . ,n.  Hence 

applying L e m m a  4 and the induction assumption we get tha t  for any il ,  ..., in > m 

the coefficient at plxyd'~ x "  "pnxy d'~ X in the series (a ~ rixyd~x) n is equal to 

ap~ril""ap~ri..  On the other  hand, the coefficient is equal to zero. Hence 

taking il = (2m + 1)2k~,..., i,~ = (2m + 1)2 k~ we get tha t  ap~bk~ -..av~bk~ = O. 

I 

Given a ring A, denote by N(A) the Wedderburn  radical of A, i.e., the  sum of 

all ni lpotent  ideals of  A, and by NI (A)  the ideal of  A containing N(A)  such tha t  

N1 (A) /N(A)  = N(A /N(A) ) .  

Theorem 6 gives immediately  

C O R O L L A R Y  7: The nil radical of R{W}  is equal to N(R{W}) .  
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Now we pass to power series rings R{x}  in one indeterminate x with coe~cients  

in a ring R. The  ring of polynomials in the indeterminate x over R will be 

denoted by R[x]. As usual, the degree of a non-zero polynomial  f ( x )  is denoted 

by deg f ( x ) .  Moreover we put  deg0  = 0. 

LEMMA 8: Let a(x) be an element of a right nil ideal of R{x} .  There exist 

a natural number n and f ( x )  �9 R[x] such that for every p(x) �9 R[x] there is 
b(x) �9 R{x}  with (a(x) ( f (x )  + p(x)x  degf(~) + b ( x ) x d e g l ( x ) + d e g p ( x ) ) )  n : O. 

Proof: Suppose the result does not hold. Then  for every natural  number  n there 

is a polynomial  g,~(x) such tha t  for every b(x) �9 R{x}, 

(a(x)( fn(x)  + gn(X)X devIl(x) + b(x)xdegI"(x)+deggn(x))) n ~ O, 

where f l ( x )  = 0 and for n > 1, fn+l(x) = f~(x) +g~(x )x  d~gl=(~). Now it is not  

hard  to check tha t  for 

a*(x) = f l (x)  + gl(x)x + g2(x)  +""  �9 R{x} 

we have (a(x)a*(x)) n # 0 for every natural  number  n, a contradiction. | 

THEOREM 9: Ira(x)  belongs to a right nil ideal of R{x} ,  then there is a natural 

number n such that a (x )R{x}  is nil of index < n. 

Proo~ Let n and f ( x )  be those of Lemma 8. I t  is not  hard  to see tha t  it suffices 

to prove tha t  for every g(x) �9 R[x], we have (a(x)g(x))" = 0. Take any go(x) �9 
R[x]. Applying  L e m m a  8 for p(x) = go(x) + rx m, where r is a non-zero element 

of R and m is a natural  number,  we get tha t  (a(x) ( f (x )  + gO(x)xdegl(x))) n �9 

xmR{z} .  Since we can take m arbi t rary  and (a(x) ( f (x )  + go(x)xdegI(~)) '~ does 

not  depend on m, we get tha t  (a(x) ( f (x )  + go(x)xdegf(~))) ~ = O. 

Subst i tu t ing in the foregoing go(x) = g(x)x  l-deg f(~) with I = deg f ( x )  + k, we 

get tha t  (a(x ) ( f (x )  + g(x)xk))  " - - 0  for k = 1, 2, .... Hence 

( a ( x ) f ( x ) ) n + a l ( x ) x k + a 2 ( x ) x 2 k + . . . + a n _ l ( x ) x  (n-1)k + (a(x )g(x ) )nxnk=O,  

for some al ( x ) , ..., a,,-1 ( x ) e n { x } not depending on k. This gives ( a( x ) f ( x ) ) n = 

al(x)  . . . . .  an- l (x )  = (a(x)g(x)) '~ = 0. The result follows. | 

In  [5], T h e o r e m  2, it was proved tha t  for every ring A the set {a E A ] the  

right ideal of A generated by a is nil of bounded  index} is contained in N1 (A). 

This and Theorem 9 give 
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COROLLARY 10: The nil radical of R{x}  is equal to NI(R{x}) .  

The following theorem was proved in [2]. In particular it shows that  there 

exists a commutat ive algebra A and an element in the nil radical of A{x}  such 

that  the subalgebra of A generated by the coefficients of the element is not nil of 

bounded index. We shall give a slightly simpler proof of the theorem. 

THEOREM 11 ([2], Theorem 3.1): Let F be the free commutative K-algebra 

generated by indeterminates sl, s2,.., over a field K of characteristic zero. Let I 

be the idea] of F generated by elements 

k 

hk -~ E SiSk-i' 
i=l 

k = 2,... 

and A = F / I .  Then A is not nil of bounded index and (glx + g2x 2 + ...)2 __ 0 

in A{x} ,  where sl = sl + I ,  s2 -- s2 + I , . . . .  

Proof: Clearly hk are the coefficients of the series (s ix  + s2x 2 +. . . )2 ,  so indeed 

( ~ l x +  ~2x 2 + - - ' ) 2  _ 0. 

Given a natural  number m > 3, let J,~ be the ideal of F generated by all 

monomials s i l " " s i ,  such that  t > m or i 1 + ' "  + i t  > m m2. Note that  
{s i I ""s im + Jml 1 < il ~__ mm2-2,m m2-2 < i2 ~_ 2m m2-2, 2m m~-2 < i3 ~_ 

3m m2-2, ..., ( m -  1)m m2-2 < i m  <_ m m2-1 } is a K-linearly independent subset of 

(Fm + Jm)/Jm. Consequently dimg( (F  m + Jm)/Jm) >- (mm~-2) m = m m(m2-2). 

On the other hand, (I + Jm)/Jm is generated as a linear space over K by the 

set {hk + J,~[ k <_ m m2} tA {hksil ""s i t  + Jm] k, i l , . . . , i t  ~ mm2,t ~ rn - 2}. 

Hence d i m g ( ( I +  Jm)/Jm) <_ m m2 + (rnm~) 2 + " "  + (m'~2) m-1 < m(rn'~2) m-1 = 

m (m-1)m~+l. However, for m _> 3, we have m(m 2 - 2) > (m - 1)rn 2 + 1, so 

F m + Jm/Jm ~: I + J,~/Jm. This shows that  A = F / I  is not nilpotent and 

hence, by the Naga ta -Higman theorem [3], A is not nil of bounded index. | 
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