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ABSTRACT
We describe the nil radical of power series rings in non-commuting
indeterminates by showing that a series belongs to the radical if and only
if the ideal generated by its coefficients is nilpotent. We also show that
the principal ideals generated by elements of the nil radical of the power
series ring in one indeterminate are nil of bounded index.

Introduction

Many studies in the theory of associative rings concern radicals and related prop-
erties of rings arising under various constructions. They are rich in interesting
and useful results but there are still many open problems in the area (cf. 1
10] and the papers cited therein). These in particular concern power series rings
(see, for instance, [1, 6, 7, 8]). In this paper we continue studies of the nil radical
of such rings.

It is relatively easy to show [8] that the power series ring in at least two non-
commuting indeterminates is nil if and only if the coefficient ring is nilpotent.
Thus it is natural to expect ([10], Question 16) that an element of a power series
ring in at least two non-commuting indeterminates belongs to the nil radical of
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the ring if and only if the ideal of the coefficient ring generated by the coefficients
of the element is nilpotent. We shall prove that this is indeed the case.

The structure of the nil radical of power series rings in one indeterminate is
more complicated. In [4] Klein proved that if R is a nil ring of bounded index,
then so is the ring R[z] of polynomials in one indeterminate z. This immediately
implies that also the power series ring R{z} is nil of bounded index. In [8] it was
proved that if R{z} is a nil ring, then R is nil of bounded index. Thus R{z} is
nil if and only if R is nil of bounded index and one could expect ([10], Question
15) that an element of the power series ring A{z} belongs to the nil radical of
A{z} if and only if the ideal of A generated by the coefficients of the element
is nil of bounded index. An example in [2] shows that this is not true even for
commutative rings. However, we shall prove that every principal right nil ideal
of A{z} is nil of bounded index. This in particular shows that the nil radical of
A{z} coincides with N(A{z}), where for a ring R, N(R) is defined ([11], p. 206)
as N(R) = {r € R|rR is nil of bounded index }.

1. Some sequences of natural numbers

Throughout the paper N denotes the set of natural numbers and S denotes the
set of all sequences {n;)2, of natural numbers such that n, =1 and n;4) = 3%
for ¢ > 1, where p; is a natural number with n; + 21 <p; < n; + 3i.

LEMMA 1: Let (n;), (m;) € S. If for some k,l, ny, = my, then k = and n; = m;
fori<k.

Proof: Letu; =3,v; =4and, fori> 1, u;y; = 3% +2(i+1), vi41 = 3% +3(i+
1). Clearly for all 4, u; < v;. We shall prove that for each i, v;+4 < u;41. It is clear
for 7 = 1. Note that for each ¢ > 1, 3% > 1 and 3¢ > 2i+1. Hence if v; +i < ui41,
then vy 1 +i+1=3%+4(i+1) =3 +2{+2(i+2) <3% +3 - 1+2(i +2) <
3% 4+3% (38— 1) +2(:+2) = 3% +2(i +2) < 3%+ +2(i +2) = uyyo. Hence the
inequality follows by induction. In particular it shows that the intervals [u;,v;]
are disjoint.

We shall prove that if n;4; = 3¢, then u; < p; < v;. It is clear for ¢ = 1. Now
37 +2(i+1) = nip1 +2(+1) < piy1 < miq1+3(E+1) =3P +3(i+1). Hence if
u; < p; < vy, then u;4 = 3“ +2(i+1) < 3pi +2(’i+1) <piy1 < I +3(i+1) <
3% +3(2 + 1) = v;41. Hence the inequalities follow by induction.

The foregoing prove the first claim of the lemma. To get the second claim it
suffices to show that for each i, n; > m; implies n;11 > msyq1. Note that since
n; and m; are powers of 3, if n; > m;, then n; > 3m;. Now if n;y; = 3P and
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miy; = 3%, thenp; >n; +20 >23m;+2i =m; +2m; + 20 > my +1+ 21 =
m; + 3¢ > ¢q;. Consequently n;17 > m;41 and the result follows. [ |

We shall say that a natural number ¢ belongs to a sequence (s;) € Sift = s;
for some i. Given natural numbers ¢ and v , we call u an S-successor of ¢ if
there is (s;) € S such that s, =t and s; = u for some k < [.

LEMMA 2: IfS = Uf_’;l S;, for some subsets S;, then there exist n € N and ¢t

belonging to a sequence of S such that each S-successor of t belongs to a sequence
of S,,.

Proof: Suppose the result does not hold, i.e., for each ¢ belonging to a sequence
of S and each ¢ there exists an S-successor f;(t) of t such that f;(t) does not
belong to any sequence of S;.

Put t; = 1 and, for ¢ > 1, t;4; = fi(t;). Applying Lemma 1 one gets that
t1,t2,... is a subsequence of a sequence s € S. It is clear that s ¢ {J;2, S, a
contradiction. n

2. Some properties of free monoids

Let W be the free monoid generated by a set of non-commuting indeterminates
containing x and y. As usual, given w € W, we denote by [(w) the length of w.
Given a subset X of the set {zy*z| k € N}, define for w € W

dx(w) = card{(w1,w2) € W x W | zwz = wyuw, for some u € X}.

Clearly dg(w) = 0 for every w e W.

LEMMA 3: The mapping dx(w) has the following properties.

— ok kY — _J0 ifw¢ X,
(a) If w=zy~z, k € N, then dx(y*) = dx(w) {1 fwe X
(b) Ifq1,90 € W and u € {zy*z| k € N}, then dx(qiuge) = dx(q1) + dx(u) +

dx(g2)-
(¢) If prups = qru'qp for some u,u’ € X and py, pa, q1, g2 € W, then dx(p1) =
dx(q1) implies that py = q1, u = v/, pa = @a.

Proof: The property (a) is a direct consequence of the definition of dx. To
get (b) let us observe that given p;,p; € W, zp1zpez = wizy*zw, for some
wy, wy € W if and only if precisely one of the equalities zpyz = wizy*zw)
or Tpex = whzy*Tw, is satisfied for some w),wj) € W. Hence dx(pizp2) =
dx(p1)+dx (pz). Consequently, if u = zy*z, then dx (q1uqz) = dx(q1)+dx (v*)+
dx(q2) = dx(q1) + dx(u) + dx(g2). Now we shall prove (c). Note first that by
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(b) we have dx (p2) = dx(gz). Observe also that if [{p,) < I{g1), then pju¢’ = ¢,
for some ¢ € W or pyu = ¢1z. In both cases, applying {a) and (b), we get
that dx(p2) # dx(qz), a contradiction. Symmetric arguments show that also

I(p1) > Il{(q1) is impossible. Thus I(py) = {{g:) and one easily concludes the
proof. n

LEMMA 4: Let X and Y be subsets of the set {zy*z| k € N}. Consider el-
ements Pi,...,Pn, q1y-- qn Of W such that dx<y(p;) = 0 fori = 1,...,n. If
PIT1P2T2 " * * PnTr = Q1T1G2%5 ** * nTn, Where T, ..., Tn € X Y and z,...,z, €
X: then D1 =Qq1y-sPn = qny, T1 = zlla ey Tp = m;; or Z?:l dy(ql) < Z?:l dy(pl)
Proof: By Lemma 3 (a),(b) we have

dy (p1) + dy (p2)+ - - +dy (pn) = dy (1T1 -+ Pnn) = dy (@127 -~ gnTy,)
=dy(q)+- - +dv(gn) + dv (z)+ - +dy (7).
Thus 37, dy (@) < i dy(pi). Moreover, if 350, dy () = 30, dv (pi),
then dy (z}) = --- = dy(z},) =0, so z},...,2;, € X Y. Now applying again
Lemma 3 (a),(b) we get that

n= dX\Y(xl) + - +dX\Y($n) = dX\Y(plxl o 'pnxn)
=dx~y(iz] - gnty)

=dx<y(q) +---+dx~v(g) +n.

Consequently, dx~y{(q1) = --- = dx~y(an) = 0. Applying Lemma 3 (c) to

’

dx <y we get by induction that p; = g1,....,Pn = ¢n and z; = 29, ..., 2, = T,

3. Nil ideals of power series rings
We start with

LEMMA 5: Let A be a subset of a ring R. The right ideal of R generated by A
is nilpotent if and only if for every finite or countable subset B of R there is an
n such that a1b - - - apb, = 0 for arbitrary aq,as,...,a, € A and by,...,b, € B.

Proof: The “only if” part of the result is clear. If the “if” part does not hold,
then for every n there exist @1,n,...,0nn € A and T1n,...,Tan € R such that
@iaTin " GnnTna # 0. However, then for B = {r; ;} the assumption does not
hold. |

Let, like in Section 2, W denote the free monoid generated by a set of inde-
terminates containing = and y. The power series ring over a ring R in this set
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of indeterminates will be denoted by R{W}. Every element a € R{W} can be
uniquely presented in the form ZpEW app, where a, € E. Elements a,, are called
coefficients of a.

THEOREM 6: An element a =73y, app belongs to a right nil ideal of R{W} if
and only if the right ideal of R generated by the set {a, | p € W} of coefficients
of a is nilpotent.

Proof: Let bg,by,... be any elements of R. Put, for every odd integer ¢ > 0,
Tgor = bk, k=0,1,...,and S; = {(s;) € S| (e X 52, rizy*iz)' = 0}. Sinceaisina
right nil ideal of R{W}, we have that S = | JS;. Let t and n be given by Lemma
2 applied to these sets. Suppose that ¢ = ¢; belongs to a sequence (¢;) € S, and
put C = {zy“z, zy°z,...}.

By Lemma 5 it suffices to show that for arbitrary coefficients a,_,...,a,, of a
and arbitrary non-negative integers kq, ..., kn, we have ap, by, ---ap bg, = 0. We
proceed by induction on j = d¢(p1)+---+de(pn). If j =0, then de(p1) = -+ =
dc(pn) = 0. Hence applying Lemma 4 for X = C and Y = (), we get that for
arbitrary non-negative integers iy, ...,%, the coefficient at pyzy®az - p,zySrz
in the series {a ) r;zy®z)” is equal to ap, 7y, - - - ap, 75, . But, on the other hand,
the coefficient is equal to zero. Hence taking i; = 2%1,... i, = 2F» we gef that
@p, b, -+ ap bx, = 0. Suppose now that j > 0 and the result holds for smaller
integers. Let m = max(f,I(p1---pn)). By the definition of sequences in S there
exists a sequence (d}) € S such that di = ¢; for ¢ < m and d,; # cmt1.
Clearly d;, ., is an S-succesor of £, so by Lemma 2 there exists (d;) € S, such
that for some k, d = d;,,;. Applying Lemma 1 to (d;) and (d}) we get that
k=m+1 and d = d; for i < m+ 1, and applying the lemma to (d;) and (c;)
we obtain that d; = ¢; if and only if ¢ < m. Note that since I(p;---p,) < m,
for Y = C and X = {zyhz,ry%z,...}, dx <y(p;) = 0 for i = 1,...,n. Hence
applying Lemma 4 and the induction assumption we get that for any iy, ...,4, > m
the coefficient at pyzy®1x---pozy®=z in the series (a3 rzydz)"™ is equal to
Gp,Ti; - Gp,Ti,. On the other hand, the coefficient is equal to zero. Hence
taking é; = (2m + 1)2%1, ... i, = (2m + 1)2%» we get that ap, b, - - ap, br, = 0.
|

Given a ring A, denote by N(A) the Wedderburn radical of A, i.e., the sum of
all nilpotent ideals of A, and by N1(A) the ideal of A containing N(A) such that
N1(A)/N(A) = N(A/N(4)).

Theorem 6 gives immediately

CoROLLARY 7: The nil radical of R{W} is equal to N(R{W}).
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Now we pass to power series rings R{z} in one indeterminate z with coefficients
in a ring R. The ring of polynomials in the indeterminate z over R will be
denoted by R[z]. As usual, the degree of a non-zero polynomial f(z) is denoted
by deg f(z). Moreover we put deg0 = 0.

LEMMA 8: Let a(z) be an element of a right nil ideal of R{z}. There exist

a natural number n and f(z) € R|z] such that for every p(z) € R[z] there is
b(z) € R{z} with (a(z)(f(z) + p(z)zde8 /(@ | p(z)gdes f{z)+degrla)))n - (.

Proof: Suppose the result does not hold. Then for every natural number n there
is a polynomial g, (x) such that for every b(z) € R{z},

(a(x)(fa(@) + gn(@)a ) + b(z)giee fn(Fdegon(@))n o g,

where fi(z) =0 and for n > 1, foy1(z) = fulz) + gn(z)zde8 (=), Now it is not
hard to check that for

a*(z) = fi(z) + 1(z)x?B N 1 gy(2)z?8 2 1 ... € R{z}

we have (a(z)a*(z))™ # 0 for every natural number n, a contradiction. ]

THEOREM 9: If a(z) belongs to a right nil ideal of R{x}, then there is a natural
number n such that a(z)R{z} is nil of index < n.

Proof: Let n and f(z) be those of Lemma 8. It is not hard to see that it suffices
to prove that for every g(z) € R[z], we have (a(z)g(z))" = 0. Take any go(z) €
R[z]. Applying Lemma 8 for p(z) = go(z) 4+ r=™, where r is a non-zero element
of R and m is a natural number, we get that (a(z)(f(z) + go(z)zd8f@)N" €
™ R{z}. Since we can take m arbitrary and (a(z)(f(z) + go(z)z°€ F®)" does
not depend on m, we get that (a(z)(f(z) + go(z)zdee @)™ = 0.

Substituting in the foregoing go(z) = g(z)z' 98 f(*) with | = deg f(z) + k, we
get that (a(z)(f(z) + g(z)z*))" =0 for k =1,2,.... Hence

(a(z) f(2))™ + a1(z)z"® + ag(z)z®* + - - + an_1 ()" V* & (a(z)g(z))"2™ =0,
for some a;(z), ..., an—1(z) € R{zx} not depending on k. This gives (a(x)f(z))" =
a1(z) = -+ = ap—1(z) = (a(z)g(x))™ = 0. The result follows. |

In {5}, Theorem 2, it was proved that for every ring A the set {a € A | the
right ideal of A generated by a is nil of bounded index} is contained in Ny (A).
This and Theorem 9 give
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COROLLARY 10: The nil radical of R{z} is equal to Ny(R{z}).

The following theorem was proved in [2]. In particular it shows that there
exists a commutative algebra A and an element in the nil radical of A{z} such
that the subalgebra of A generated by the coefficients of the element is not nil of
bounded index. We shall give a slightly simpler proof of the theorem.

THEOREM 11 ([2], Theorem 3.1): Let F be the free commutative K-algebra
generated by indeterminates sy, Sa, ... over a field K of characteristic zero. Let I
be the ideal of F' generated by elements

k
hk = Zsisk_i, k= 2,
i=1

and A = F/I. Then A is not nil of bounded index and (517 + 332° +--)2 = 0
in A{z}, where 31 =351+ 1,532 =82+ 1,....

Proof: Clearly hy, are the coefficients of the series (517 + 5222 + - --)2, so indeed
(817 + Bz + )2 = 0.

Given a natural number m > 3, let J,, be the ideal of F generated by all
monomials s;, ---s;, such that ¢ > m or ¢y + --- + 4, > m™ . Note that
{86, 8, +Im] 1 <11 £ m"‘2_2,7rz"‘2_2 < iy < 2m"‘2‘2, 2m™ -2 < iz <
3m™ =2, .. (m—1)m™ =2 < i, <m™ -1} is a K-linearly independent subset of
(F™ + J)/Jm. Consequently dimg (F™ + Jp)/Jm) > (m™ =2)m = mm(m*=2),
On the other hand, (I + J,,)/Jm is generated as a linear space over K by the
set {hi + Jml| k < m"‘z} U {hgsi, -~ 8i, + Im] ki1, eeis < m’"2,t <m-—2}.
Hence dimg (1 + Jm)/Jm) < m™ +(m™ )2 4+ 4 (m™" )™= < mp(mm’)m-1 =
mm=Dm*+1 - However, for m > 3, we have m(m? — 2) > (m — 1)m? + 1, so
F™ + Jm/Jm € I + Jm/Jm. This shows that A = F/I is not nilpotent and
hence, by the Nagata-Higman theorem [3], A is not nil of bounded index. |
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